1,151 research outputs found

    Security of 5G-V2X: Technologies, Standardization and Research Directions

    Full text link
    Cellular-Vehicle to Everything (C-V2X) aims at resolving issues pertaining to the traditional usability of Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) networking. Specifically, C-V2X lowers the number of entities involved in vehicular communications and allows the inclusion of cellular-security solutions to be applied to V2X. For this, the evolvement of LTE-V2X is revolutionary, but it fails to handle the demands of high throughput, ultra-high reliability, and ultra-low latency alongside its security mechanisms. To counter this, 5G-V2X is considered as an integral solution, which not only resolves the issues related to LTE-V2X but also provides a function-based network setup. Several reports have been given for the security of 5G, but none of them primarily focuses on the security of 5G-V2X. This article provides a detailed overview of 5G-V2X with a security-based comparison to LTE-V2X. A novel Security Reflex Function (SRF)-based architecture is proposed and several research challenges are presented related to the security of 5G-V2X. Furthermore, the article lays out requirements of Ultra-Dense and Ultra-Secure (UD-US) transmissions necessary for 5G-V2X.Comment: 9 pages, 6 figures, Preprin

    Deep Learning Data and Indexes in a Database

    Get PDF
    A database is used to store and retrieve data, which is a critical component for any software application. Databases requires configuration for efficiency, however, there are tens of configuration parameters. It is a challenging task to manually configure a database. Furthermore, a database must be reconfigured on a regular basis to keep up with newer data and workload. The goal of this thesis is to use the query workload history to autonomously configure the database and improve its performance. We achieve proposed work in four stages: (i) we develop an index recommender using deep reinforcement learning for a standalone database. We evaluated the effectiveness of our algorithm by comparing with several state-of-the-art approaches, (ii) we build a real-time index recommender that can, in real-time, dynamically create and remove indexes for better performance in response to sudden changes in the query workload, (iii) we develop a database advisor. Our advisor framework will be able to learn latent patterns from a workload. It is able to enhance a query, recommend interesting queries, and summarize a workload, (iv) we developed LinkSocial, a fast, scalable, and accurate framework to gain deeper insights from heterogeneous data

    Analysis of Single Photon Detectors in Differential Phase Shift Quantum Key Distribution

    Full text link
    In the current research work, an analysis of differential phase shift quantum key distribution using InGaAs/InP and Silicon-APD (avalanche photodiode) as single photon detectors is performed. Various performance parameters of interest such as shifted key rate, secure key rate, and secure communication distance obtained are investigated. In this optical fiber-based differential phase shift quantum key distribution, it is observed that Si-APD under frequency conversion method at telecommunication window outperforms the InGaAs/InP APD

    Effect of Noise on Practical Quantum Communication Systems

    Get PDF
    Entanglement is an important resource for various applications of quantum computation. Another important endeavor is to establish the role of entanglement in practical implementation where system of interest is affected by various kinds of noisy channels. Here, a single classical bit is used to send information under the influence of a noisy quantum channel. The entanglement content of quantum states is computed under noisy channels such as amplitude damping, phase damping, squeesed generalised amplitude damping, Pauli channels and various collective noise models on the protocols of quantum key distribution.

    Investigation of tool geometry effect and penetration strategies on cutting forces during thread milling

    Get PDF
    The application of thread milling is increasing in industry because of its inherent advantages over other thread cutting techniques. The objective of this study is to investigate the effect of milling cutter tool geometry on cutting forces during thread milling. The proposed method can compare the performance of milling cutters in spite of the different number of tooth. The best thread milling cutter among the studied tools was determined from the cutting forces point of view. Furthermore, this study also pinpoints the best penetration strategy that provides minimum cutting forces. Lower cutting force variations will lead to fewer vibrations of the tool which in turn will produce accurate part.Postdoc de V Sharma financé par la région Bourgogn
    • …
    corecore